Selective activation of cannabinoid CB2 receptors suppresses neuropathic nociception induced by treatment with the chemotherapeutic agent paclitaxel in rats.

نویسندگان

  • Elizabeth J Rahn
  • Alexander M Zvonok
  • Ganesh A Thakur
  • Atmaram D Khanolkar
  • Alexandros Makriyannis
  • Andrea G Hohmann
چکیده

Activation of cannabinoid CB(2) receptors suppresses neuropathic pain induced by traumatic nerve injury. The present studies were conducted to evaluate the efficacy of cannabinoid CB(2) receptor activation in suppressing painful peripheral neuropathy evoked by chemotherapeutic treatment with the antitumor agent paclitaxel. Rats received paclitaxel (2 mg/kg i.p./day) on 4 alternate days to induce mechanical hypersensitivity (mechanical allodynia). Mechanical allodynia was defined as a lowering of the threshold for paw withdrawal to stimulation of the plantar hind paw surface with an electronic von Frey stimulator. Mechanical allodynia developed in paclitaxel-treated animals relative to groups receiving the Cremophor EL/ethanol/saline vehicle at the same times. Two structurally distinct cannabinoid CB(2) agonists, the aminoalkylindole (R,S)-AM1241 [(R,S)-(2-iodo-5-nitrophenyl)-[1-((1-methyl-piperidin-2-yl)methyl)-1H-indol-3-yl]-methanone] and the cannabilactone AM1714 (1,9-dihydroxy-3-(1',1'-dimethylheptyl)-6H-benzo[c]chromene-6-one), produced a dose-related suppression of established paclitaxel-evoked mechanical allodynia after systemic administration. Pretreatment with the CB(2) antagonist SR144528 [5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-N-(1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)-1H-pyrazole-3-carboxamide], but not the CB(1) antagonist SR141716 [5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide], blocked the antiallodynic effects of both (R,S)-AM1241 and AM1714. Moreover, (R)-AM1241, but not (S)-AM1241, suppressed paclitaxel-evoked mechanical allodynia relative to either vehicle treatment or preinjection thresholds, consistent with mediation by CB(2). Administration of either the CB(1) or CB(2) antagonist alone failed to alter paclitaxel-evoked mechanical allodynia. Moreover, (R,S)-AM1241 did not alter paw withdrawal thresholds in rats that received the Cremophor EL vehicle in lieu of paclitaxel, whereas AM1714 induced a modest antinociceptive effect. Our data suggest that cannabinoid CB(2) receptors may be important therapeutic targets for the treatment of chemotherapy-evoked neuropathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prophylactic cannabinoid administration blocks the development of paclitaxel-induced neuropathic nociception during analgesic treatment and following cessation of drug delivery

BACKGROUND Chemotherapeutic treatment results in chronic pain in an estimated 30-40 percent of patients. Limited and often ineffective treatments make the need for new therapeutics an urgent one. We compared the effects of prophylactic cannabinoids as a preventative strategy for suppressing development of paclitaxel-induced nociception. The mixed CB1/CB2 agonist WIN55,212-2 was compared with th...

متن کامل

CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain.

Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- ...

متن کامل

Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors.

BACKGROUND Cannabinoid receptor agonists inhibit inflammatory hyperalgesia in animal models. Nonselective cannabinoid receptor agonists also produce central nervous system (CNS) side effects. Agonists selective for CB2 cannabinoid receptors, which are not found in the CNS, do not produce the CNS effects typical of nonselective cannabinoid receptor agonists but do inhibit acute nociception. The ...

متن کامل

P 32: The Role of CB2 Activation in Rats Under Harmaline Toxicity

Introduction: β-carbolines are shown to have significant anti-inflammatory effect via the inhibition of some inflammatory mediators including TNF-α and PGE2. In previous studies Purkinje cell deterioration have been proposed the dominant pathogenesis of harmaline toxicity. WIN55, 212-2 is a non-selective cannabinoid CB1 and CB2 receptor agonist. Combination of WIN55, 212-2 ...

متن کامل

Characterization of cannabinoid-induced relief of neuropathic pain in a rat model of cisplatin-induced neuropathy.

Clinical use of antineoplastic drugs is associated with the development of numerous adverse effects that many patients find intolerable, including peripheral neuropathy. Cannabinoids have relieved neuropathic pain in different animal models. But their therapeutic activities could be affected by their psychoactive properties. The aim of this work was to determine the effect of cannabinoids in ci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 327 2  شماره 

صفحات  -

تاریخ انتشار 2008